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Abstract  

In linear field theories for vector potentials Ai and tensor potentials gik = gki, the Maxwell 
and the linearized Einstein equations are the only field equations from which true con- 
servation laws result for each gauge of the field equations. 

In linear field theories one can derive pseudoconservation laws by  means of  
a superpotential ,  just as in Einstein's theory  of gravitation. We shall see that  
these superpotentials of  linear field theories give some deeper insight about 
the meaning of  the several superpotentials of  gravitational theory.  

Let us start  with pseudoconservation laws for a "current  vector" Si in 
linear field theory.  We denote by  [ ]  the linear d 'Alember t  operator  

[]= ~ik~iak (i, k = 0, 1, 2, 3) (1) 

The linear field equations may be given by  this wave operator ['-1, operating 
on the vector field Ai ,  and the source strength Ji, generating the field: 

r /m~13mAi  =- Ai, u = Ji (2) 

Here the left-hand side of Eq. (2) cannot be writ ten as a divergence of  an 
ant isymmetric  superpotential .  Using the field equations, we can now define 
a "current  vector" Si in the following way: 

Si = Al, u - J i  = At, li - Ai,  u (3) 

One sees that  the divergence of  Si vanishes identically: 

Si, i = 0 (4) 
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and Si can be derived from the antisymmetric superpotential 

F i t  = A1 ,  i - A i ,  l = - E l i  (5) 

according to 

Si = Fil, l (6) 

It is well known that the superpotential Fit is gauge invariant under gauge 
transformations 

A} = At + ¢, t (7) 

In a similar way we can obtain pseudoconservation laws for a symmetric 
tensor field gix,  fulfilling the linear wave equation: 

[ ]  gik --- gik, ~ = T~ (8) 

where the symmetric tensor T/~ is the source strength, generating the field, 
and again []g ik  is not the divergence of an antisymmetric superpotential. 

Just as in the case of the vector field A i  we can define the following 
"tensors of matter," which are conserved: 

S } k  = g i l ,  l k  - -  Z~k  (9) 

S J  I = g k l ,  l i  - Z~k  (10)  

Using the field Eqs. (8), one verifies quickly that Eqs, (9) and (10) indeed 
yield 

II 
S I i k ,  k = 0 ;  S ik ,  i = O  (11) 

Further, one gets the more explicit expressions for SIik  and Stiik : 

S J k  = g i t ,  l k  - -  g i k ,  l l  (12)  

SJ I = gin, il - gik, u (13) 

The expressions (12) and (13) show that the corresponding superpotentials 
are 

] '[I ik l  = g i l ,  k - -  g i g ,  l = - -  ~[I illc (14) 

and 

so that 

~ [ I l k i l  = g k l ,  i - -  g i k ,  1 = - -  ~ [ I l k l i  (15) 

S I i k =  ~ Iim, t, SlIig = lIIlkit ,  t (16) 

The most general antisymmetrical superpotential for our linear field theory 
we can easily obtain if we take the most general superpotential of the non- 
linear theory, given by M~ller (1958), 93l im. We take its linearized form and 
add it to one of our linear superpotentials 11[ i I k l  or ~[iII k l  (The indices 
k, l are raised with the Minkowski metric r? m, of course.) If we take 1I i I m, 



CONSERVATION LAWS IN LINEAR FIELD THEORIES 6 9  

we get the following expression for the general superpotential in linear 
tensor field theory: 

~)ikt = _ ~ / k  = ! l y  + 9J-ty = (1 + al)gin, mO?krn~ tn -- ~7lm~7 kn) 

+ ( 1 2 ( 5 i k g l m m  --  6 i l g k n , n )  + a3(Sikr?  lm  --  6 i l ~ k m ) g r r ,  m ( 1 7 )  

Now true conservation laws mean (in linear field theory), that the sources 
of the field Ji and Tik respectively, are divergence free. But in this case the 
wave operators WAi  and Wgik, respectively, must already have vanishing 
divergence, because of the field Eqs. (2) and (8). That means that these wave 
operators can be represented as the divergence of the superpotentiai, and so 
the sources Ji and 7'/k themselves are the divergence of the superpotential. 

In the case of the vector field Ai we get in this manner Maxwell's 
equations: 

W A i  - f f tk ,  k = a~i (1  8 )  

In the case of the tensor-field gik we have additionally to postulate the 
symmetry of Tik. This gives us the linearized Einstein equations: 

W g i k  ~ gik,  m m +  g m m ,  ik  -- g im,  k m  -- g k m ,  im - -  ~ikgrr,  m m  

+ r?ikgrm, rm = -- 2Tik (19) 

With Einstein's (1916a) gauge 

~ i k g i k  = grr  = const (20) 

Eq. (19) takes the form 

gik, m m  -- g im,  k m  -- gkm, im  + r~ikgrrn, r m  = --  2 Tik (21) 

The superpotential, which gives the left-hand side of Eq. (19), is just the 
(linearized) superpotential of Einstein (1916a) and v. Freud (1939): 

"~ikl = ~(gik ,  l - -  gil, k )  1 --  - -  -~ (llikglrn, m --  ~ i lgkm,  m )  --  l (7? ilgrr, k 

-- ~?ikgrr, t) (22) 

That means that the left-hand side of Eq. (19) results as the divergence of 
(17) with the constants al,  a2, a3 chosen in the following manner: 

1 + a l  = a 2  = - -  a 3  = - -  i (23) 

We can write now (19) in the form 

~ i k  1, * = T i t c  = Tk, (24) 

The second term of ~ikl in (22) serves to symmetrize Tik,  defined by (24). 
The third term of (22) secures the gauge invariance of the field equation, 
which means the invariance of ~ ik t t  under gauge transformations of the 
form 

g ' i k  = g i k  + ~ i , k  + } k , i  (25) 
with }r, r 4= 0. 
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It is just the (linearized) ansatz of Einstein (1916a) and v. Freud (1939) 
that produces the gauge invariance of the divergence of the general super- 
potential ~ i kl,t and the resulting field equations. If we take the general 
superpotential (17), and perform a gauge transformation (25), we get 

~ ' i k l  = ~ ) ' i k l [ g ' t s ]  = ~) iM[g t s ]  + (1 + a l ) ( ~ k , l  - -  ~ l , k ) , i  +a2 [~ik(~l ,  rn 

+ ~m, 1), m --  72il(~k, m + ~m, k) ,  m ] - -  2a3 [*?imkm -- *?ik•lm ] ~r, rm  (26) 

The postulate of gauge invariance (which is equivalent to covariance of the 
field equations against infinitesimal transformations) of the divergence of 
the superpotential 

'i m, l = ~ i m, l (27) 

gives the following conditions for the constants al ,  a2, a3: 

~k, l l l ( l  + a l  -- a2) = 0 

~ l ,  I l k ( - -1  --  a l  - a2 --  2a3) = 0 (28) 

Ilik~l,  l m m ( 2 a 2  + 2a3) = 0 

From (28) it follows that 

1 + al -- a2 = - a 3  ( 2 9 )  

which just defines the superpotential of Einstein and v. Freud (up to a 
common constant factor). Therefore, the linearized superpotential ~ ik{ of 
Einstein and v. Freud's superpotential ×im gives the only gauge invariant 

~ikl z, That means we could take the field equation 

gik,  1l - -  gil, M - -  gin, il + ~?ikgrm, rrn +/3(grr, ik - -  ~likgrr, ram)  = T * i k  (30) 

in linear tensor field theory; this equation would allow true conservation 
laws, but the postulate of gauge invariance tells us that only the field 
equations with/3 = 1 are possible. 

The transition from linear tensor field theory to the theory of general 
relativity now follows from the remark that locally at a world point Po 
(with coordinates X~ = 0) in a system of geodesic coordinates yields for the 
metric g i k  and the Christoffel symbols 

g ik  (0) = ~ik, l-'~a(0 ) : 0 (31) 

In these coordinates Einstein's equations of the gravitational field (Einstein 
1916a) 

R i k  - -  ½ g i k R  = --  Tile (32) 

go over in their linearized form, and simultaneously the dynamical equation 

Zik ,  k + [ ' rk  k T i  r -- P irk Tr  k = 0 (33) 
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takes the form of a conservation law for energy and impulse. Now we can 
see immediatley that the superpotential Xi m of  Einstein and v. Freud in 
general relatively theory is also distinguished as that superpotentiat that 
allows a true conservation law for energy and impulse. With Xi m the 
dynamical equation takes the form 

?(im, lk = (X/-~ Ti k + 9.Iik), k = 0 (34) 

where 9.1i k is Einstein's affine tensor of gravitational energy (Einstein, 
1916a, 1916b), which is bilinear in the first derivatives of gik, and therefore 
vanishing in Po. In Po the divergence of the superpotential of  Einstein and 
v. Freud then equals 

Xikl, l(O) = ~ikl, l = Ti k (35) 

that means that it is just the source density of  the matter as in the case of  
linear field theory. The tensor of energy and impulse of  the gravitational field 
9Xi k does not occur as a source locally (cf. Treder, 1974). 
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